Cargando…
A Differential Privacy Strategy Based on Local Features of Non-Gaussian Noise in Federated Learning
As an emerging artificial intelligence technology, federated learning plays a significant role in privacy preservation in machine learning, although its main objective is to prevent peers from peeping data. However, attackers from the outside can steal metadata in transit and through data reconstruc...
Autores principales: | Wang, Xinyi, Wang, Jincheng, Ma, Xue, Wen, Chenglin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003035/ https://www.ncbi.nlm.nih.gov/pubmed/35408039 http://dx.doi.org/10.3390/s22072424 |
Ejemplares similares
-
A federated learning differential privacy algorithm for non-Gaussian heterogeneous data
por: Yang, Xinyu, et al.
Publicado: (2023) -
PLDP-FL: Federated Learning with Personalized Local Differential Privacy
por: Shen, Xiaoying, et al.
Publicado: (2023) -
Federated learning and differential privacy for medical image analysis
por: Adnan, Mohammed, et al.
Publicado: (2022) -
Superior Resilience of Non-Gaussian Entanglement against Local Gaussian Noises
por: Filippov, Sergey, et al.
Publicado: (2022) -
The Discrete Gaussian Expectation Maximization (Gradient) Algorithm for Differential Privacy
por: Wu, Weisan
Publicado: (2021)