Cargando…
A One-Stage Ensemble Framework Based on Convolutional Autoencoder for Remaining Useful Life Estimation
As the legislative pressure to reduce energy consumption is increasing, data analysis of power consumption is critical in the production planning of manufacturing facilities. In legacy studies, a machine conducting a single continuous operation has been mainly observed for power estimation. However,...
Autores principales: | Park, Yong-Keun, Kim, Min-Kyung, Um, Jumyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003039/ https://www.ncbi.nlm.nih.gov/pubmed/35408430 http://dx.doi.org/10.3390/s22072817 |
Ejemplares similares
-
Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on an Autoencoder Scheme
por: Hou, Guisheng, et al.
Publicado: (2020) -
Vibration-Based Wear Condition Estimation of Journal Bearings Using Convolutional Autoencoders
por: Ates, Cihan, et al.
Publicado: (2023) -
Supernovae Detection with Fully Convolutional One-Stage Framework
por: Yin, Kai, et al.
Publicado: (2021) -
Automated visual inspection of CMS HGCAL silicon sensor surface using an ensemble of a deep convolutional autoencoder and classifier
por: Grönroos, Sonja, et al.
Publicado: (2023) -
Orthogonal Local Image Descriptors with Convolutional Autoencoders
por: Roman-Rangel, Edgar, et al.
Publicado: (2020)