Cargando…

The Potential of LEO Satellite-Based Opportunistic Navigation for High Dynamic Applications

Resilient navigation in Global Navigation Satellite System (GNSS)-degraded and -denied environments is becoming more and more required for many applications. It can typically be based on multi-sensor data fusion that relies on alternative technologies to GNSS. In this work, we studied the potential...

Descripción completa

Detalles Bibliográficos
Autores principales: Jardak, Nabil, Jault, Quentin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003064/
https://www.ncbi.nlm.nih.gov/pubmed/35408156
http://dx.doi.org/10.3390/s22072541
Descripción
Sumario:Resilient navigation in Global Navigation Satellite System (GNSS)-degraded and -denied environments is becoming more and more required for many applications. It can typically be based on multi-sensor data fusion that relies on alternative technologies to GNSS. In this work, we studied the potential of a low earth orbit (LEO) satellite communication system for a high-dynamic application, when it is integrated with an inertial measurement unit (IMU) and magnetometers. We derived the influence of the main error sources that affect the LEO space vehicle (SV) Doppler-based navigation on both positioning and attitude estimations. This allowed us to determine the best, intermediate and worst cases of navigation performances. We show that while the positioning error is large due to large orbit errors or high SV clock drifts, it becomes competitive with that of an inertial navigation system (INS) based on a better quality IMU if precise satellite orbits are available. On the other hand, the attitude estimation tolerates large orbit errors and high SV clock drifts. The obtained results suggest that LEO SV signals, used as signals of opportunity for navigation, are an attractive alternative in GNSS-denied environments for high dynamic vehicles.