Cargando…
Partial Transfer Ensemble Learning Framework: A Method for Intelligent Diagnosis of Rotating Machinery Based on an Incomplete Source Domain
Most cross-domain intelligent diagnosis approaches presume that the health states in training datasets are consistent with those in testing. However, it is usually difficult and expensive to collect samples under all failure states during the training stage in actual engineering; this causes the tra...
Autores principales: | Mao, Gang, Zhang, Zhongzheng, Jia, Sixiang, Noman, Khandaker, Li, Yongbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003093/ https://www.ncbi.nlm.nih.gov/pubmed/35408193 http://dx.doi.org/10.3390/s22072579 |
Ejemplares similares
-
A Weighted Subdomain Adaptation Network for Partial Transfer Fault Diagnosis of Rotating Machinery
por: Jia, Sixiang, et al.
Publicado: (2021) -
Diagnosis of Multiple Faults in Rotating Machinery Using Ensemble Learning
por: Inyang, Udeme Ibanga, et al.
Publicado: (2023) -
Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition
por: Lei, Yaguo, et al.
Publicado: (2013) -
Ensemble Dilated Convolutional Neural Network and Its Application in Rotating Machinery Fault Diagnosis
por: Cai, Yuxiang, et al.
Publicado: (2022) -
Rotating Machinery Fault Diagnosis Method by Combining Time-Frequency Domain Features and CNN Knowledge Transfer
por: Ye, Lihao, et al.
Publicado: (2021)