Cargando…

Accurate Prediction of Knee Angles during Open-Chain Rehabilitation Exercises Using a Wearable Array of Nanocomposite Stretch Sensors

In this work, a knee sleeve is presented for application in physical therapy applications relating to knee rehabilitation. The device is instrumented with sixteen piezoresistive sensors to measure knee angles during exercise, and can support at-home rehabilitation methods. The development of the dev...

Descripción completa

Detalles Bibliográficos
Autores principales: Wood, David S., Jensen, Kurt, Crane, Allison, Lee, Hyunwook, Dennis, Hayden, Gladwell, Joshua, Shurtz, Anne, Fullwood, David T., Seeley, Matthew K., Mitchell, Ulrike H., Christensen, William F., Bowden, Anton E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003122/
https://www.ncbi.nlm.nih.gov/pubmed/35408112
http://dx.doi.org/10.3390/s22072499
Descripción
Sumario:In this work, a knee sleeve is presented for application in physical therapy applications relating to knee rehabilitation. The device is instrumented with sixteen piezoresistive sensors to measure knee angles during exercise, and can support at-home rehabilitation methods. The development of the device is presented. Testing was performed on eighteen subjects, and knee angles were predicted using a machine learning regressor. Subject-specific and device-specific models are analyzed and presented. Subject-specific models average root mean square errors of 7.6 and 1.8 degrees for flexion/extension and internal/external rotation, respectively. Device-specific models average root mean square errors of 12.6 and 3.5 degrees for flexion/extension and internal/external rotation, respectively. The device presented in this work proved to be a repeatable, reusable, low-cost device that can adequately model the knee’s flexion/extension and internal/external rotation angles for rehabilitation purposes.