Cargando…
RAUM-VO: Rotational Adjusted Unsupervised Monocular Visual Odometry
Unsupervised learning for monocular camera motion and 3D scene understanding has gained popularity over traditional methods, which rely on epipolar geometry or non-linear optimization. Notably, deep learning can overcome many issues of monocular vision, such as perceptual aliasing, low-textured area...
Autores principales: | Cimarelli, Claudio, Bavle, Hriday, Sanchez-Lopez, Jose Luis, Voos, Holger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003133/ https://www.ncbi.nlm.nih.gov/pubmed/35408264 http://dx.doi.org/10.3390/s22072651 |
Ejemplares similares
-
An Unsupervised Monocular Visual Odometry Based on Multi-Scale Modeling
por: Zhi, Henghui, et al.
Publicado: (2022) -
A Review of Radio Frequency Based Localisation for Aerial and Ground Robots with 5G Future Perspectives
por: Kabiri, Meisam, et al.
Publicado: (2022) -
From SLAM to Situational Awareness: Challenges and Survey
por: Bavle, Hriday, et al.
Publicado: (2023) -
Visual SLAM: What Are the Current Trends and What to Expect?
por: Tourani, Ali, et al.
Publicado: (2022) -
Unsupervised Monocular Visual Odometry for Fast-Moving Scenes Based on Optical Flow Network with Feature Point Matching Constraint
por: Zhuang, Yuji, et al.
Publicado: (2022)