Cargando…

A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images

Foot progression angle (FPA) analysis is one of the core methods to detect gait pathologies as basic information to prevent foot injury from excessive in-toeing and out-toeing. Deep learning-based object detection can assist in measuring the FPA through plantar pressure images. This study aims to es...

Descripción completa

Detalles Bibliográficos
Autores principales: Ardhianto, Peter, Subiakto, Raden Bagus Reinaldy, Lin, Chih-Yang, Jan, Yih-Kuen, Liau, Ben-Yi, Tsai, Jen-Yung, Akbari, Veit Babak Hamun, Lung, Chi-Wen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003219/
https://www.ncbi.nlm.nih.gov/pubmed/35408399
http://dx.doi.org/10.3390/s22072786
Descripción
Sumario:Foot progression angle (FPA) analysis is one of the core methods to detect gait pathologies as basic information to prevent foot injury from excessive in-toeing and out-toeing. Deep learning-based object detection can assist in measuring the FPA through plantar pressure images. This study aims to establish a precision model for determining the FPA. The precision detection of FPA can provide information with in-toeing, out-toeing, and rearfoot kinematics to evaluate the effect of physical therapy programs on knee pain and knee osteoarthritis. We analyzed a total of 1424 plantar images with three different You Only Look Once (YOLO) networks: YOLO v3, v4, and v5x, to obtain a suitable model for FPA detection. YOLOv4 showed higher performance of the profile-box, with average precision in the left foot of 100.00% and the right foot of 99.78%, respectively. Besides, in detecting the foot angle-box, the ground-truth has similar results with YOLOv4 (5.58 ± 0.10° vs. 5.86 ± 0.09°, p = 0.013). In contrast, there was a significant difference in FPA between ground-truth vs. YOLOv3 (5.58 ± 0.10° vs. 6.07 ± 0.06°, p < 0.001), and ground-truth vs. YOLOv5x (5.58 ± 0.10° vs. 6.75 ± 0.06°, p < 0.001). This result implies that deep learning with YOLOv4 can enhance the detection of FPA.