Cargando…
Exploring Artificial Neural Networks Efficiency in Tiny Wearable Devices for Human Activity Recognition
The increasing diffusion of tiny wearable devices and, at the same time, the advent of machine learning techniques that can perform sophisticated inference, represent a valuable opportunity for the development of pervasive computing applications. Moreover, pushing inference on edge devices can in pr...
Autores principales: | Lattanzi, Emanuele, Donati, Matteo, Freschi, Valerio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003270/ https://www.ncbi.nlm.nih.gov/pubmed/35408250 http://dx.doi.org/10.3390/s22072637 |
Ejemplares similares
-
Optimization of deep neural network-based human activity recognition for a wearable device
por: Suwannarat, K., et al.
Publicado: (2021) -
Pedestrian detection model based on Tiny-Yolov3 architecture for wearable devices to visually impaired assistance
por: Maya-Martínez, Sergio-Uriel, et al.
Publicado: (2023) -
Artificial Neural Network Analyzing Wearable Device Gait Data for Identifying Patients With Stroke Unable to Return to Work
por: Iosa, Marco, et al.
Publicado: (2021) -
Neural network-based Bluetooth synchronization of multiple wearable devices
por: Balasubramanian, Karthikeyan Kalyanasundaram, et al.
Publicado: (2023) -
Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network
por: Zhao, Yongjia, et al.
Publicado: (2017)