Cargando…

Resource Allocation and 3D Deployment of UAVs-Assisted MEC Network with Air-Ground Cooperation

Equipping an unmanned aerial vehicle (UAV) with a mobile edge computing (MEC) server is an interesting technique for assisting terminal devices (TDs) to complete their delay sensitive computing tasks. In this paper, we investigate a UAV-assisted MEC network with air–ground cooperation, where both UA...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Jinming, Xu, Sijie, Zhang, Jun, Wu, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003303/
https://www.ncbi.nlm.nih.gov/pubmed/35408207
http://dx.doi.org/10.3390/s22072590
Descripción
Sumario:Equipping an unmanned aerial vehicle (UAV) with a mobile edge computing (MEC) server is an interesting technique for assisting terminal devices (TDs) to complete their delay sensitive computing tasks. In this paper, we investigate a UAV-assisted MEC network with air–ground cooperation, where both UAV and ground access point (GAP) have a direct link with TDs and undertake computing tasks cooperatively. We set out to minimize the maximum delay among TDs by optimizing the resource allocation of the system and by three-dimensional (3D) deployment of UAVs. Specifically, we propose an iterative algorithm by jointly optimizing UAV–TD association, UAV horizontal location, UAV vertical location, bandwidth allocation, and task split ratio. However, the overall optimization problem will be a mixed-integer nonlinear programming (MINLP) problem, which is hard to deal with. Thus, we adopt successive convex approximation (SCA) and block coordinate descent (BCD) methods to obtain a solution. The simulation results have shown that our proposed algorithm is efficient and has a great performance compared to other benchmark schemes.