Cargando…
Deep Prior Approach for Room Impulse Response Reconstruction
In this paper, we propose a data-driven approach for the reconstruction of unknown room impulse responses (RIRs) based on the deep prior paradigm. We formulate RIR reconstruction as an inverse problem. More specifically, a convolutional neural network (CNN) is employed prior, in order to obtain a re...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003306/ https://www.ncbi.nlm.nih.gov/pubmed/35408325 http://dx.doi.org/10.3390/s22072710 |
Sumario: | In this paper, we propose a data-driven approach for the reconstruction of unknown room impulse responses (RIRs) based on the deep prior paradigm. We formulate RIR reconstruction as an inverse problem. More specifically, a convolutional neural network (CNN) is employed prior, in order to obtain a regularized solution to the RIR reconstruction problem for uniform linear arrays. This approach allows us to avoid assumptions on sound wave propagation, acoustic environment, or measuring setting made in state-of-the-art RIR reconstruction algorithms. Moreover, differently from classical deep learning solutions in the literature, the deep prior approach employs a per-element training. Therefore, the proposed method does not require training data sets, and it can be applied to RIRs independently from available data or environments. Results on simulated data demonstrate that the proposed technique is able to provide accurate results in a wide range of scenarios, including variable direction of arrival of the source, room [Formula: see text] , and SNR at the sensors. The devised technique is also applied to real measurements, resulting in accurate RIR reconstruction and robustness to noise compared to state-of-the-art solutions. |
---|