Cargando…
Machine Learning-Based Software Defect Prediction for Mobile Applications: A Systematic Literature Review
Software defect prediction studies aim to predict defect-prone components before the testing stage of the software development process. The main benefit of these prediction models is that more testing resources can be allocated to fault-prone modules effectively. While a few software defect predicti...
Autores principales: | Jorayeva, Manzura, Akbulut, Akhan, Catal, Cagatay, Mishra, Alok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003321/ https://www.ncbi.nlm.nih.gov/pubmed/35408166 http://dx.doi.org/10.3390/s22072551 |
Ejemplares similares
-
Deep Learning-Based Defect Prediction for Mobile Applications
por: Jorayeva, Manzura, et al.
Publicado: (2022) -
Stress Detection Using Experience Sampling: A Systematic Mapping Study
por: Dogan, Gulin, et al.
Publicado: (2022) -
Detecting Malware by Analyzing App Permissions on Android Platform: A Systematic Literature Review
por: Ehsan, Adeel, et al.
Publicado: (2022) -
Hybrid Blockchain Platforms for the Internet of Things (IoT): A Systematic Literature Review
por: Alkhateeb, Ahmed, et al.
Publicado: (2022) -
Applications of deep learning for phishing detection: a systematic literature review
por: Catal, Cagatay, et al.
Publicado: (2022)