Cargando…

Investigation of the Warpage of a High-Density Polyethylene Pallet by Plastic Injection Compression Molding: Part I—Numerical Approach

Many challenges are associated with the injection compression molding process for producing a half-pallet (1320 mm × 1110 mm × 75 mm, length × width × height), which is butt-welded to another one for enhancing its strength. This pooled high-density polyethylene (HDPE) pallet is able to endure the im...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Chun-Der, Liao, Yi-Ling, Tsai, Hsi-Hsun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003352/
https://www.ncbi.nlm.nih.gov/pubmed/35406310
http://dx.doi.org/10.3390/polym14071437
Descripción
Sumario:Many challenges are associated with the injection compression molding process for producing a half-pallet (1320 mm × 1110 mm × 75 mm, length × width × height), which is butt-welded to another one for enhancing its strength. This pooled high-density polyethylene (HDPE) pallet is able to endure the impacts of a heavy load and a low ambient temperature. Reducing the warpage of a half-pallet is, therefore, essential for reducing the residual internal stress within the welded portions. An advanced Moldex3D package helps to detail the temperature distribution and warpage of a half-pallet. The pre-setting molding parameters from a mass-production factory produce half-pallets with worse flatness. In this investigation on using appropriate cooling water temperatures within the core and cavity plates of the mold, the numerical results show that the warpage of the top surface of the half-pallet was 11.549 mm, low warpage with respect to this large-scale pallet. Furthermore, the compression speed of 50–60 mm/s may have produced a low flatness of the half-pallet in this study.