Cargando…
A Fast Space-Time Adaptive Processing Algorithm Based on Sparse Bayesian Learning for Airborne Radar
Space-time adaptive processing (STAP) plays an essential role in clutter suppression and moving target detection in airborne radar systems. The main difficulty is that independent and identically distributed (i.i.d) training samples may not be sufficient to guarantee the performance in the heterogen...
Autores principales: | Liu, Cheng, Wang, Tong, Zhang, Shuguang, Ren, Bing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003390/ https://www.ncbi.nlm.nih.gov/pubmed/35408278 http://dx.doi.org/10.3390/s22072664 |
Ejemplares similares
-
A Space-Time Adaptive Processing Method Based on Sparse Bayesian Learning for Maneuvering Airborne Radar
por: Zhang, Shuguang, et al.
Publicado: (2022) -
Space-Time Adaptive Processing Based on Modified Sparse Learning via Iterative Minimization for Conformal Array Radar
por: Ren, Bing, et al.
Publicado: (2022) -
Slow-Time Code Design for Space-Time Adaptive Processing in Airborne Radar
por: Li, Shiyi, et al.
Publicado: (2021) -
A Novel Clutter Suppression Method Based on Sparse Bayesian Learning for Airborne Passive Bistatic Radar with Contaminated Reference Signal
por: Wang, Jipeng, et al.
Publicado: (2021) -
Space-time adaptive processing for radar
por: Guerci, Joseph R
Publicado: (2014)