Cargando…

Continuous Hidden Markov Model Based Spectrum Sensing with Estimated SNR for Cognitive UAV Networks

In this paper, to enhance the spectrum utilization in cognitive unmanned aerial vehicle networks (CUAVNs), we propose a cooperative spectrum sensing scheme based on a continuous hidden Markov model (CHMM) with a novel signal-to-noise ratio (SNR) estimation method. First, to exploit the Markov proper...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Yuqing, Xu, Wenjun, Zhang, Zhi, Wang, Fengyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003457/
https://www.ncbi.nlm.nih.gov/pubmed/35408234
http://dx.doi.org/10.3390/s22072620
Descripción
Sumario:In this paper, to enhance the spectrum utilization in cognitive unmanned aerial vehicle networks (CUAVNs), we propose a cooperative spectrum sensing scheme based on a continuous hidden Markov model (CHMM) with a novel signal-to-noise ratio (SNR) estimation method. First, to exploit the Markov property in the spectrum state, we model the spectrum states and the corresponding fusion values as a hidden Markov model. A spectrum prediction is obtained by combining the parameters of CHMM and a preliminary sensing result (obtained from a clustered heterogeneous two-stage-fusion scheme), and this prediction can further guide the sensing detection procedure. Then, we analyze the detection performance of the proposed scheme by deriving its closed-formed expressions. Furthermore, considering imperfect SNR estimation in practical applications, we design a novel SNR estimation scheme which is inspired by the reconstruction of the signal on graphs to enhance the proposed CHMM-based sensing scheme with practical SNR estimation. Simulation results demonstrate the proposed CHMM-based cooperative spectrum sensing scheme outperforms the ones without CHMM, and the CHMM-based sensing scheme with the proposed SNR estimator can outperform the existing algorithm considerably.