Cargando…
Data-Driven Fault Diagnosis Techniques: Non-Linear Directional Residual vs. Machine-Learning-Based Methods
Linear dependence of variables is a commonly used assumption in most diagnostic systems for which many robust methodologies have been developed over the years. In case the system nonlinearities are relevant, fault diagnosis methods, relying on the assumption of linearity, might potentially provide u...
Autores principales: | Cartocci, Nicholas, Napolitano, Marcello R., Crocetti, Francesco, Costante, Gabriele, Valigi, Paolo, Fravolini, Mario L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003460/ https://www.ncbi.nlm.nih.gov/pubmed/35408249 http://dx.doi.org/10.3390/s22072635 |
Ejemplares similares
-
A Comprehensive Case Study of Data-Driven Methods for Robust Aircraft Sensor Fault Isolation
por: Cartocci, Nicholas, et al.
Publicado: (2021) -
Interval Fuzzy Model for Robust Aircraft IMU Sensors Fault Detection
por: Crispoltoni, Michele, et al.
Publicado: (2018) -
Integrating Sparse Learning-Based Feature Detectors into Simultaneous Localization and Mapping—A Benchmark Study
por: Mollica, Giuseppe, et al.
Publicado: (2023) -
Solving fault diagnosis problems: linear synthesis techniques
por: Varga, Andreas
Publicado: (2017) -
Design and Analysis of Linear Fault-Tolerant Permanent-Magnet Vernier Machines
por: Xu, Liang, et al.
Publicado: (2014)