Cargando…
Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling
Soil spectroscopy in the visible-to-near infrared (VNIR) and mid-infrared (MIR) is a cost-effective method to determine the soil organic carbon content (SOC) based on predictive spectral models calibrated to analytical-determined SOC reference data. The degree to which uncertainty in reference data...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003508/ https://www.ncbi.nlm.nih.gov/pubmed/35408363 http://dx.doi.org/10.3390/s22072749 |
_version_ | 1784686146552332288 |
---|---|
author | Semella, Sebastian Hutengs, Christopher Seidel, Michael Ulrich, Mathias Schneider, Birgit Ortner, Malte Thiele-Bruhn, Sören Ludwig, Bernard Vohland, Michael |
author_facet | Semella, Sebastian Hutengs, Christopher Seidel, Michael Ulrich, Mathias Schneider, Birgit Ortner, Malte Thiele-Bruhn, Sören Ludwig, Bernard Vohland, Michael |
author_sort | Semella, Sebastian |
collection | PubMed |
description | Soil spectroscopy in the visible-to-near infrared (VNIR) and mid-infrared (MIR) is a cost-effective method to determine the soil organic carbon content (SOC) based on predictive spectral models calibrated to analytical-determined SOC reference data. The degree to which uncertainty in reference data and spectral measurements contributes to the estimated accuracy of VNIR and MIR predictions, however, is rarely addressed and remains unclear, in particular for current handheld MIR spectrometers. We thus evaluated the reproducibility of both the spectral reflectance measurements with portable VNIR and MIR spectrometers and the analytical dry combustion SOC reference method, with the aim to assess how varying spectral inputs and reference values impact the calibration and validation of predictive VNIR and MIR models. Soil reflectance spectra and SOC were measured in triplicate, the latter by different laboratories, for a set of 75 finely ground soil samples covering a wide range of parent materials and SOC contents. Predictive partial least-squares regression (PLSR) models were evaluated in a repeated, nested cross-validation approach with systematically varied spectral inputs and reference data, respectively. We found that SOC predictions from both VNIR and MIR spectra were equally highly reproducible on average and similar to the dry combustion method, but MIR spectra were more robust to calibration sample variation. The contributions of spectral variation (ΔRMSE < 0.4 g·kg(−1)) and reference SOC uncertainty (ΔRMSE < 0.3 g·kg(−1)) to spectral modeling errors were small compared to the difference between the VNIR and MIR spectral ranges (ΔRMSE ~1.4 g·kg(−1) in favor of MIR). For reference SOC, uncertainty was limited to the case of biased reference data appearing in either the calibration or validation. Given better predictive accuracy, comparable spectral reproducibility and greater robustness against calibration sample selection, the portable MIR spectrometer was considered overall superior to the VNIR instrument for SOC analysis. Our results further indicate that random errors in SOC reference values are effectively compensated for during model calibration, while biased SOC calibration data propagates errors into model predictions. Reference data uncertainty is thus more likely to negatively impact the estimated validation accuracy in soil spectroscopy studies where archived data, e.g., from soil spectral libraries, are used for model building, but it should be negligible otherwise. |
format | Online Article Text |
id | pubmed-9003508 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90035082022-04-13 Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling Semella, Sebastian Hutengs, Christopher Seidel, Michael Ulrich, Mathias Schneider, Birgit Ortner, Malte Thiele-Bruhn, Sören Ludwig, Bernard Vohland, Michael Sensors (Basel) Article Soil spectroscopy in the visible-to-near infrared (VNIR) and mid-infrared (MIR) is a cost-effective method to determine the soil organic carbon content (SOC) based on predictive spectral models calibrated to analytical-determined SOC reference data. The degree to which uncertainty in reference data and spectral measurements contributes to the estimated accuracy of VNIR and MIR predictions, however, is rarely addressed and remains unclear, in particular for current handheld MIR spectrometers. We thus evaluated the reproducibility of both the spectral reflectance measurements with portable VNIR and MIR spectrometers and the analytical dry combustion SOC reference method, with the aim to assess how varying spectral inputs and reference values impact the calibration and validation of predictive VNIR and MIR models. Soil reflectance spectra and SOC were measured in triplicate, the latter by different laboratories, for a set of 75 finely ground soil samples covering a wide range of parent materials and SOC contents. Predictive partial least-squares regression (PLSR) models were evaluated in a repeated, nested cross-validation approach with systematically varied spectral inputs and reference data, respectively. We found that SOC predictions from both VNIR and MIR spectra were equally highly reproducible on average and similar to the dry combustion method, but MIR spectra were more robust to calibration sample variation. The contributions of spectral variation (ΔRMSE < 0.4 g·kg(−1)) and reference SOC uncertainty (ΔRMSE < 0.3 g·kg(−1)) to spectral modeling errors were small compared to the difference between the VNIR and MIR spectral ranges (ΔRMSE ~1.4 g·kg(−1) in favor of MIR). For reference SOC, uncertainty was limited to the case of biased reference data appearing in either the calibration or validation. Given better predictive accuracy, comparable spectral reproducibility and greater robustness against calibration sample selection, the portable MIR spectrometer was considered overall superior to the VNIR instrument for SOC analysis. Our results further indicate that random errors in SOC reference values are effectively compensated for during model calibration, while biased SOC calibration data propagates errors into model predictions. Reference data uncertainty is thus more likely to negatively impact the estimated validation accuracy in soil spectroscopy studies where archived data, e.g., from soil spectral libraries, are used for model building, but it should be negligible otherwise. MDPI 2022-04-02 /pmc/articles/PMC9003508/ /pubmed/35408363 http://dx.doi.org/10.3390/s22072749 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Semella, Sebastian Hutengs, Christopher Seidel, Michael Ulrich, Mathias Schneider, Birgit Ortner, Malte Thiele-Bruhn, Sören Ludwig, Bernard Vohland, Michael Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling |
title | Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling |
title_full | Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling |
title_fullStr | Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling |
title_full_unstemmed | Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling |
title_short | Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling |
title_sort | accuracy and reproducibility of laboratory diffuse reflectance measurements with portable vnir and mir spectrometers for predictive soil organic carbon modeling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003508/ https://www.ncbi.nlm.nih.gov/pubmed/35408363 http://dx.doi.org/10.3390/s22072749 |
work_keys_str_mv | AT semellasebastian accuracyandreproducibilityoflaboratorydiffusereflectancemeasurementswithportablevnirandmirspectrometersforpredictivesoilorganiccarbonmodeling AT hutengschristopher accuracyandreproducibilityoflaboratorydiffusereflectancemeasurementswithportablevnirandmirspectrometersforpredictivesoilorganiccarbonmodeling AT seidelmichael accuracyandreproducibilityoflaboratorydiffusereflectancemeasurementswithportablevnirandmirspectrometersforpredictivesoilorganiccarbonmodeling AT ulrichmathias accuracyandreproducibilityoflaboratorydiffusereflectancemeasurementswithportablevnirandmirspectrometersforpredictivesoilorganiccarbonmodeling AT schneiderbirgit accuracyandreproducibilityoflaboratorydiffusereflectancemeasurementswithportablevnirandmirspectrometersforpredictivesoilorganiccarbonmodeling AT ortnermalte accuracyandreproducibilityoflaboratorydiffusereflectancemeasurementswithportablevnirandmirspectrometersforpredictivesoilorganiccarbonmodeling AT thielebruhnsoren accuracyandreproducibilityoflaboratorydiffusereflectancemeasurementswithportablevnirandmirspectrometersforpredictivesoilorganiccarbonmodeling AT ludwigbernard accuracyandreproducibilityoflaboratorydiffusereflectancemeasurementswithportablevnirandmirspectrometersforpredictivesoilorganiccarbonmodeling AT vohlandmichael accuracyandreproducibilityoflaboratorydiffusereflectancemeasurementswithportablevnirandmirspectrometersforpredictivesoilorganiccarbonmodeling |