Cargando…
Toward Exploiting Second-Order Feature Statistics for Arbitrary Image Style Transfer
Generating images of artistic style from input images, also known as image style transfer, has been improved in the quality of output style and the speed of image generation since deep neural networks have been applied in the field of computer vision research. However, the previous approaches used f...
Autor principal: | Choi, Hyun-Chul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003536/ https://www.ncbi.nlm.nih.gov/pubmed/35408228 http://dx.doi.org/10.3390/s22072611 |
Ejemplares similares
-
Arbitrary Font Generation by Encoder Learning of Disentangled Features
por: Lee, Jeong-Sik, et al.
Publicado: (2022) -
Compact Image-Style Transfer: Channel Pruning on the Single Training of a Network
por: Kim, Minseong, et al.
Publicado: (2022) -
General Nonlocal Probability of Arbitrary Order
por: Tarasov, Vasily E.
Publicado: (2023) -
Acoustic Eigenvalues of a Quasispherical Resonator: Second Order Shape Perturbation Theory for Arbitrary Modes
por: Mehl, James B.
Publicado: (2007) -
Total Style Transfer with a Single Feed-Forward Network
por: Kim, Minseong, et al.
Publicado: (2022)