Cargando…
HGDTI: predicting drug–target interaction by using information aggregation based on heterogeneous graph neural network
BACKGROUND: In research on new drug discovery, the traditional wet experiment has a long period. Predicting drug–target interaction (DTI) in silico can greatly narrow the scope of search of candidate medications. Excellent algorithm model may be more effective in revealing the potential connection b...
Autores principales: | Yu, Liyi, Qiu, Wangren, Lin, Weizhong, Cheng, Xiang, Xiao, Xuan, Dai, Jiexia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004085/ https://www.ncbi.nlm.nih.gov/pubmed/35413800 http://dx.doi.org/10.1186/s12859-022-04655-5 |
Ejemplares similares
-
MSEDDI: Multi-Scale Embedding for Predicting Drug—Drug Interaction Events
por: Yu, Liyi, et al.
Publicado: (2023) -
BOW-GBDT: A GBDT Classifier Combining With Artificial Neural Network for Identifying GPCR–Drug Interaction Based on Wordbook Learning From Sequences
por: Qiu, Wangren, et al.
Publicado: (2021) -
Metapath Aggregated Graph Neural Network and Tripartite Heterogeneous Networks for Microbe-Disease Prediction
por: Chen, Yali, et al.
Publicado: (2022) -
Identifying GPCR-drug interaction based on wordbook learning from sequences
por: Wang, Pu, et al.
Publicado: (2020) -
Attention-Based Aggregation Graph Networks for Knowledge Graph Information Transfer
por: Zhao, Ming, et al.
Publicado: (2020)