Cargando…
Supervised learning of COVID-19 patients' characteristics to discover symptom patterns and improve patient outcome prediction
The world today faces a new challenge that is unprecedented in the last 100 years. The emergence of a new coronavirus has led to a human catastrophe. Scientists in various sciences have been looking for solutions to this problem so far. In addition to general vaccination, maintaining social distance...
Autores principales: | Ilbeigipour, Sadegh, Albadvi, Amir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004256/ https://www.ncbi.nlm.nih.gov/pubmed/35434262 http://dx.doi.org/10.1016/j.imu.2022.100933 |
Ejemplares similares
-
Cluster-based analysis of COVID-19 cases using self-organizing map neural network and K-means methods to improve medical decision-making
por: Ilbeigipour, Sadegh, et al.
Publicado: (2022) -
Real-Time Heart Arrhythmia Detection Using Apache Spark Structured Streaming
por: Ilbeigipour, Sadegh, et al.
Publicado: (2021) -
A Social Network Analysis Approach to Evaluate the Relationship
Between the Mobility Network Metrics and the COVID-19 Outbreak
por: Ilbeigipour, Sadegh, et al.
Publicado: (2023) -
Learning to Discover Explainable Clinical Features With Minimum Supervision
por: Al Turk, Lutfiah, et al.
Publicado: (2022) -
Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification
por: Otálora, Sebastian, et al.
Publicado: (2021)