Cargando…

A systematic pan-cancer study demonstrates the oncogenic function of heterogeneous nuclear ribonucleoprotein C

Although complex links between heterogeneous nuclear ribonucleoprotein C (HNRNPC) and numerous types of cancer have been shown in both cell and animal models, a comprehensive pan-cancer investigation on the features and activities of HNRNPC is still lacking. Based on the Cancer Genome Atlas and Gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Chenxi, Wu, Qian, Feng, Nianjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004556/
https://www.ncbi.nlm.nih.gov/pubmed/35344508
http://dx.doi.org/10.18632/aging.203981
Descripción
Sumario:Although complex links between heterogeneous nuclear ribonucleoprotein C (HNRNPC) and numerous types of cancer have been shown in both cell and animal models, a comprehensive pan-cancer investigation on the features and activities of HNRNPC is still lacking. Based on the Cancer Genome Atlas and Gene Expression Omnibus datasets, we investigated the possible oncogenic effects of HNRNPC in thirty-three cancers. HNRNPC expression was detected in the majority of cancers, and its expression level was shown to be significantly linked with cancer patient prognosis. HNRNPC increased the phosphorylation of S220, which was detected in various cancers, including ovarian cancer and colon cancer. HNRNPC expression was also shown to be related to cancer-associated cell infiltration, most notably in uveal melanoma, testicular germ cell tumors, and thymoma. Additionally, the signaling pathway for vascular endothelial growth factors and RNA transport were implicated in HNRNPC's functioning processes. In short, HNRNPC may further influence cancer progression through gene mutation, protein phosphorylation, cancer associated fibroblasts infiltration and related molecular pathways. This work was intended to provide a relatively thorough knowledge of the oncogenic activities of HNRNPC across a variety of tumor types by performing a systematic pan-cancer investigation.