Cargando…
PIPENN: protein interface prediction from sequence with an ensemble of neural nets
MOTIVATION: The interactions between proteins and other molecules are essential to many biological and cellular processes. Experimental identification of interface residues is a time-consuming, costly and challenging task, while protein sequence data are ubiquitous. Consequently, many computational...
Autores principales: | Stringer, Bas, de Ferrante, Hans, Abeln, Sanne, Heringa, Jaap, Feenstra, K Anton, Haydarlou, Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004643/ https://www.ncbi.nlm.nih.gov/pubmed/35150231 http://dx.doi.org/10.1093/bioinformatics/btac071 |
Ejemplares similares
-
SeRenDIP-CE: sequence-based interface prediction for conformational epitopes
por: Hou, Qingzhen, et al.
Publicado: (2021) -
BioASF: a framework for automatically generating executable pathway models specified in BioPAX
por: Haydarlou, Reza, et al.
Publicado: (2016) -
Motif-Aware PRALINE: Improving the alignment of motif regions
por: Dijkstra, Maurits, et al.
Publicado: (2018) -
Multi-task learning to leverage partially annotated data for PPI interface prediction
por: Capel, Henriette, et al.
Publicado: (2022) -
Sequence specificity between interacting and non-interacting homologs identifies interface residues – a homodimer and monomer use case
por: Hou, Qingzhen, et al.
Publicado: (2015)