Cargando…
Optimal transport improves cell–cell similarity inference in single-cell omics data
MOTIVATION: High‐throughput single-cell molecular profiling is revolutionizing biology and medicine by unveiling the diversity of cell types and states contributing to development and disease. The identification and characterization of cellular heterogeneity are typically achieved through unsupervis...
Autores principales: | Huizing, Geert-Jan, Peyré, Gabriel, Cantini, Laura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004651/ https://www.ncbi.nlm.nih.gov/pubmed/35157031 http://dx.doi.org/10.1093/bioinformatics/btac084 |
Ejemplares similares
-
Paired single-cell multi-omics data integration with Mowgli
por: Huizing, Geert-Jan, et al.
Publicado: (2023) -
Epigenetic regulation of neuronal cell specification inferred with single cell “Omics” data
por: Yin, Liduo, et al.
Publicado: (2020) -
Generalized and scalable trajectory inference in single-cell omics data with VIA
por: Stassen, Shobana V., et al.
Publicado: (2021) -
Computational optimal transport: with applications to data science
por: Peyré, Gabriel, et al.
Publicado: (2019) -
Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms
por: Kang, Yoonjee, et al.
Publicado: (2021)