Cargando…
iScore: An MPI supported software for ranking protein–protein docking models based on a random walk graph kernel and support vector machines
Computational docking is a promising tool to model three-dimensional (3D) structures of protein–protein complexes, which provides fundamental insights of protein functions in the cellular life. Singling out near-native models from the huge pool of generated docking models (referred to as the scoring...
Autores principales: | Renaud, Nicolas, Jung, Yong, Honavar, Vasant, Geng, Cunliang, Bonvin, Alexandre M.J.J., Xue, Li C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005067/ https://www.ncbi.nlm.nih.gov/pubmed/35419466 http://dx.doi.org/10.1016/j.softx.2020.100462 |
Ejemplares similares
-
iScore: a novel graph kernel-based function for scoring protein–protein docking models
por: Geng, Cunliang, et al.
Publicado: (2020) -
MetaScore: A Novel Machine-Learning-Based Approach to Improve Traditional Scoring Functions for Scoring Protein–Protein Docking Conformations
por: Jung, Yong, et al.
Publicado: (2023) -
DeepRank-GNN: a graph neural network framework to learn patterns in protein–protein interfaces
por: Réau, Manon, et al.
Publicado: (2022) -
Ranking Support Vector Machine with Kernel Approximation
por: Chen, Kai, et al.
Publicado: (2017) -
Template-based protein–protein docking exploiting pairwise interfacial residue restraints
por: Xue, Li C, et al.
Publicado: (2017)