Cargando…
Using Kernel Method to Include Firm Correlation for Stock Price Prediction
In this work, we propose AGKN (attention-based graph learning kernel network), a novel framework to incorporate information of correlated firms of a target stock for its price prediction in an end-to-end way. We first construct a stock-axis attention module to extract dynamic and asymmetric spatial...
Autor principal: | Xu, Hang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005277/ https://www.ncbi.nlm.nih.gov/pubmed/35422853 http://dx.doi.org/10.1155/2022/4964394 |
Ejemplares similares
-
Recurrent convolutional neural kernel model for stock price movement prediction
por: Liu, Suhui, et al.
Publicado: (2020) -
Emotions in Twitter communication and stock prices of firms: the impact of Covid-19 pandemic
por: Dhar, Suparna, et al.
Publicado: (2021) -
A business model predicting the impact of live-stream marketing on firms' stock price - An event study
por: Luo, Shunjun, et al.
Publicado: (2022) -
Firms' exposures on COVID-19 and stock price crash risk: Evidence from China
por: Kong, Xiaowei, et al.
Publicado: (2023) -
Stock price prediction using principal components
por: Ghorbani, Mahsa, et al.
Publicado: (2020)