Cargando…
A Hybrid Model for Leaf Diseases Classification Based on the Modified Deep Transfer Learning and Ensemble Approach for Agricultural AIoT-Based Monitoring
As possible diseases develop on plant leaves, classification is constantly hampered by obstacles such as overfitting and low accuracy. To distinguish healthy products from defective ones, the agricultural industry requires precise and error-free analysis. Deep convolutional neural networks are an ef...
Autor principal: | Saberi Anari, Maryam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005283/ https://www.ncbi.nlm.nih.gov/pubmed/35422854 http://dx.doi.org/10.1155/2022/6504616 |
Ejemplares similares
-
Recent Advancements and Challenges of AIoT Application in Smart Agriculture: A Review
por: Adli, Hasyiya Karimah, et al.
Publicado: (2023) -
The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications
por: Alzuhair, Ahmed, et al.
Publicado: (2023) -
Context awareness based Sketch-DeepNet architecture for hand-drawn sketches classification and recognition in AIoT
por: Ali, Safdar, et al.
Publicado: (2023) -
Trends and Challenges in AIoT/IIoT/IoT Implementation
por: Hou, Kun Mean, et al.
Publicado: (2023) -
LPAI—A Complete AIoT Framework Based on LPWAN Applicable to Acoustic Scene Classification Scenarios
por: Jing, Xinru, et al.
Publicado: (2022)