Cargando…

Genetic and Molecular Characterization Revealed the Prognosis Efficiency of Histone Acetylation in Pan-Digestive Cancers

The imbalance between acetylation and deacetylation of histone proteins, important for epigenetic modifications, is closely associated with various diseases, including cancer. However, knowledge regarding the modification of histones across the different types of digestive cancers is still lacking....

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Tao, Wang, Bofang, Gu, Baohong, Su, Fei, Xiang, Lin, Liu, Le, Li, Xuemei, Wang, Xueyan, Gao, Lei, Chen, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005301/
https://www.ncbi.nlm.nih.gov/pubmed/35422864
http://dx.doi.org/10.1155/2022/3938652
Descripción
Sumario:The imbalance between acetylation and deacetylation of histone proteins, important for epigenetic modifications, is closely associated with various diseases, including cancer. However, knowledge regarding the modification of histones across the different types of digestive cancers is still lacking. The purpose of this research was to analyze the role of histone acetylation and deacetylation in pan-digestive cancers. We systematically characterized the molecular alterations and clinical relevance of 13 histone acetyltransferase (HAT) and 18 histone deacetylase (HDAC) genes in five types of digestive cancers, including esophageal carcinoma, gastric cancer, hepatocellular carcinoma, pancreatic cancer, and colorectal cancer. Recurrent mutations and copy number variation (CNV) were extensively found in acetylation-associated genes across pan-digestive cancers. HDAC9 and KAT6A showed widespread copy number amplification across five pan-digestive cancers, while ESCO2, EP300, and HDAC10 had prevalent copy number deletions. Accordingly, we found that HAT and HDAC genes correlated with multiple cancer hallmark-related pathways, especially the histone modification-related pathway, PRC2 complex pathway. Furthermore, the expression pattern of HAT and HDAC genes stratified patients with clinical benefit in hepatocellular carcinoma and pancreatic cancer. These results indicated that acetylation acts as a key molecular regulation of pan-digestive tumor progression.