Cargando…
Porosity induced by dislocation dynamics in quartz-rich shear bands of granitic rocks
The production of micro-pores is a driving mechanism for fluids to interact with deep environment and influence rock properties. Yet, such a porosity still remains misunderstood to occur in viscous rocks and may be attributed to either grain boundary sliding (GBS), dissolution effects or sub-grain r...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005511/ https://www.ncbi.nlm.nih.gov/pubmed/35414708 http://dx.doi.org/10.1038/s41598-022-10053-x |
Sumario: | The production of micro-pores is a driving mechanism for fluids to interact with deep environment and influence rock properties. Yet, such a porosity still remains misunderstood to occur in viscous rocks and may be attributed to either grain boundary sliding (GBS), dissolution effects or sub-grain rotation. Here we focus on quartz-rich shear bands across the Naxos western granite (Aegean Sea, Greece), where we document sub-micron pores at quartz boundaries. While most of these pores are observed along grain boundaries, some of them occur at intra-grain boundaries, which excludes dissolution or GBS to produce them, but instead involves the dynamic of dislocations. We then confirm that quartz is dominated by dislocation creep with evidence of a moderate to strong lattice-preferred orientation (LPO) and numerous tilt/twist boundaries, including at the pluton margin where rocks embrittled. These features coincide with (1) randomly oriented ‘inclusion’ quartz grains along tilt/twist boundaries and (2) a partial dependency of the LPO strength on grain size. Our findings suggest that pores arise from coalescing dislocations at boundaries of rotating sub-grains, providing nucleation sites for new grains to be precipitated during plastic flow. Fluid infiltration, rock embrittlement and related implications are also expected through pores accumulation with increasing strain. |
---|