Cargando…
A high-generalizability machine learning framework for predicting the progression of Alzheimer’s disease using limited data
Alzheimer’s disease is a neurodegenerative disease that imposes a substantial financial burden on society. A number of machine learning studies have been conducted to predict the speed of its progression, which varies widely among different individuals, for recruiting fast progressors in future clin...
Autores principales: | Wang, Caihua, Li, Yuanzhong, Tsuboshita, Yukihiro, Sakurai, Takuya, Goto, Tsubasa, Yamaguchi, Hiroyuki, Yamashita, Yuichi, Sekiguchi, Atsushi, Tachimori, Hisateru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005545/ https://www.ncbi.nlm.nih.gov/pubmed/35414651 http://dx.doi.org/10.1038/s41746-022-00577-x |
Ejemplares similares
-
Dataset’s chemical diversity limits the generalizability of machine learning predictions
por: Glavatskikh, Marta, et al.
Publicado: (2019) -
Trends in the effect of COVID-19 on consultations for persons with clinical and subclinical eating disorders
por: Kawai, Keisuke, et al.
Publicado: (2023) -
Limits to the accurate and generalizable use of soundscapes to monitor biodiversity
por: Sethi, Sarab S., et al.
Publicado: (2023) -
A Unified Framework on Generalizability of Clinical Prediction Models
por: Wan, Bohua, et al.
Publicado: (2022) -
EFAR-MMLA: An Evaluation Framework to Assess and Report Generalizability of Machine Learning Models in MMLA
por: Chejara, Pankaj, et al.
Publicado: (2021)