Cargando…

Anti-obesity medication prescriptions by race/ethnicity and use of an interpreter in a pediatric weight management clinic

BACKGROUND: Race/ethnicity and low English proficiency healthcare disparities are well established in the United States. We sought to determine if there are race/ethnicity differences in anti-obesity medication (AOM) prescription rates among youth with severe obesity treated in a pediatric weight ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Bomberg, Eric M., Palzer, Elise F., Rudser, Kyle D., Kelly, Aaron S., Bramante, Carolyn T., Seligman, Hilary K., Noni, Favour, Fox, Claudia K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005816/
https://www.ncbi.nlm.nih.gov/pubmed/35432917
http://dx.doi.org/10.1177/20420188221090009
Descripción
Sumario:BACKGROUND: Race/ethnicity and low English proficiency healthcare disparities are well established in the United States. We sought to determine if there are race/ethnicity differences in anti-obesity medication (AOM) prescription rates among youth with severe obesity treated in a pediatric weight management clinic and if, among youth from non-primary English speaking families, there are differences in prescriptions between those using interpreters during visits versus not. METHODS: We reviewed electronic health records of 2- to 18-year-olds with severe obesity seen from 2012 to 2021. Race/ethnicity was self-report, and AOMs included topiramate, stimulants (e.g. phentermine, lisdexamfetamine), naltrexone (±bupropion), glucagon-like peptide-1 agonists, and orlistat. We used general linear regression models with log-link to compare incidence rate ratios (IRRs) within the first 1 and 3 years of being followed, controlling for age, percent of the 95th BMI percentile (%BMIp95), number of obesity-related comorbidities (e.g. insulin resistance, hypertension), median household income, and interpreter use. We repeated similar analyses among youth from non-primary English speaking families, comparing those using interpreters versus not. RESULTS: 1,725 youth (mean age 11.5 years; %BMIp95 142%; 53% non-Hispanic White, 20% Hispanic/Latino, 16% non-Hispanic black; 6% used interpreters) were seen, of which 15% were prescribed AOMs within 1 year. The IRR for prescriptions was lower among Hispanic/Latino compared to non-Hispanic White youth at one (IRR 0.70; CI: 0.49–1.00; p = 0.047) but not 3 years. No other statistically significant differences by race/ethnicity were found. Among non-primary English speaking families, the IRR for prescriptions was higher at 1 year (IRR 2.49; CI: 1.32–4.70; p = 0.005) in those using interpreters versus not. CONCLUSIONS: Among youth seen in a pediatric weight management clinic, AOM prescription incidence rates were lower in Hispanics/Latinos compared to non-Hispanic Whites. Interpreter use was associated with higher prescription incidence rates among non-primary English speakers. Interventions to achieve equity in AOM prescriptions may help mitigate disparities in pediatric obesity.