Cargando…

m5Cpred-XS: A New Method for Predicting RNA m5C Sites Based on XGBoost and SHAP

As one of the most important post-transcriptional modifications of RNA, 5-cytosine-methylation (m5C) is reported to closely relate to many chemical reactions and biological functions in cells. Recently, several computational methods have been proposed for identifying m5C sites. However, the accuracy...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yinbo, Shen, Yingying, Wang, Hong, Zhang, Yong, Zhu, Xiaolei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005994/
https://www.ncbi.nlm.nih.gov/pubmed/35432446
http://dx.doi.org/10.3389/fgene.2022.853258
Descripción
Sumario:As one of the most important post-transcriptional modifications of RNA, 5-cytosine-methylation (m5C) is reported to closely relate to many chemical reactions and biological functions in cells. Recently, several computational methods have been proposed for identifying m5C sites. However, the accuracy and efficiency are still not satisfactory. In this study, we proposed a new method, m5Cpred-XS, for predicting m5C sites of H. sapiens, M. musculus, and A. thaliana. First, the powerful SHAP method was used to select the optimal feature subset from seven different kinds of sequence-based features. Second, different machine learning algorithms were used to train the models. The results of five-fold cross-validation indicate that the model based on XGBoost achieved the highest prediction accuracy. Finally, our model was compared with other state-of-the-art models, which indicates that m5Cpred-XS is superior to other methods. Moreover, we deployed the model on a web server that can be accessed through http://m5cpred-xs.zhulab.org.cn/, and m5Cpred-XS is expected to be a useful tool for studying m5C sites.