Cargando…

Phenology-based adjustments improve population estimates of Antarctic breeding seabirds: the case of Cape petrels in East Antarctica

To monitor and conserve a species, it is crucial to understand the size and distribution of populations. For seabirds, population surveys are usually conducted at peak breeding attendance. One of the largest populations of Cape petrels in East Antarctica is at the Vestfold Islands, where environment...

Descripción completa

Detalles Bibliográficos
Autores principales: Kliska, Kimberley, Southwell, Colin, Salton, Marcus, Williams, Richard, Emmerson, Louise
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9006014/
https://www.ncbi.nlm.nih.gov/pubmed/35425635
http://dx.doi.org/10.1098/rsos.211659
Descripción
Sumario:To monitor and conserve a species, it is crucial to understand the size and distribution of populations. For seabirds, population surveys are usually conducted at peak breeding attendance. One of the largest populations of Cape petrels in East Antarctica is at the Vestfold Islands, where environmental and logistical constraints often prevent access to breeding sites at the optimal time for population surveys. In this study, we aim to quantify the contemporary and historical breeding population size of these Cape petrels by adjusting nest counts for variation in breeding phenology using photographs from remote cameras. We also compare spatial distribution between 1970s and 2017/2018. Our results show ground counts occurred outside peak breeding attendance, and adjusting for phenology changed the contemporary and historical population estimates. The Cape petrels showed local intra-island or adjacent-island changes in their distribution between the 1970s and 2017/2018 with no evidence of expanding or restricting their distribution or a significant change in their breeding population size. The results emphasize the importance of accounting for phenology in population counts, where populations are inaccessible at an optimal survey time. We discuss the applications of our research methodology for populations breeding in remote areas and as a baseline for assessing population change.