Cargando…
Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization
Research in modern data-driven dynamical systems is typically focused on the three key challenges of high dimensionality, unknown dynamics and nonlinearity. The dynamic mode decomposition (DMD) has emerged as a cornerstone for modelling high-dimensional systems from data. However, the quality of the...
Autores principales: | Baddoo, Peter J., Herrmann, Benjamin, McKeon, Beverley J., Brunton, Steven L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9006118/ https://www.ncbi.nlm.nih.gov/pubmed/35450026 http://dx.doi.org/10.1098/rspa.2021.0830 |
Ejemplares similares
-
Deep learning for universal linear embeddings of nonlinear dynamics
por: Lusch, Bethany, et al.
Publicado: (2018) -
Decomposition analysis method in linear and nonlinear differential equations
por: Haldar, Kansari
Publicado: (2015) -
Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control
por: Brunton, Steven L., et al.
Publicado: (2016) -
Disambiguation of Authors with Beard
por: LOUPPE, Gilles
Publicado: (2015) -
SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics
por: Kaheman, Kadierdan, et al.
Publicado: (2020)