Cargando…
Automated sleep state classification of wide-field calcium imaging data via multiplex visibility graphs and deep learning
BACKGROUND: Wide-field calcium imaging (WFCI) allows for monitoring of cortex-wide neural dynamics in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process i...
Autores principales: | Zhang, Xiaohui, Landsness, Eric C., Chen, Wei, Miao, Hanyang, Tang, Michelle, Brier, Lindsey M., Culver, Joseph P., Lee, Jin-Moo, Anastasio, Mark A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9006179/ https://www.ncbi.nlm.nih.gov/pubmed/34822945 http://dx.doi.org/10.1016/j.jneumeth.2021.109421 |
Ejemplares similares
-
Validation of Deep Learning-based Sleep State Classification
por: Chen, Wei, et al.
Publicado: (2022) -
Separability of calcium slow waves and functional connectivity during wake, sleep, and anesthesia
por: Brier, Lindsey M., et al.
Publicado: (2019) -
Open-source statistical and data processing tools for wide-field optical imaging data in mice
por: Brier, Lindsey M., et al.
Publicado: (2023) -
Multiplex visibility graphs to investigate recurrent neural network dynamics
por: Bianchi, Filippo Maria, et al.
Publicado: (2017) -
Visibility graphs for fMRI data: Multiplex temporal graphs and their modulations across resting-state networks
por: Sannino, Speranza, et al.
Publicado: (2017)