Cargando…
Spatial Bayesian GLM on the cortical surface produces reliable task activations in individuals and groups
The general linear model (GLM) is a widely popular and convenient tool for estimating the functional brain response and identifying areas of significant activation during a task or stimulus. However, the classical GLM is based on a massive univariate approach that does not explicitly leverage the si...
Autores principales: | Spencer, Daniel, Yue, Yu Ryan, Bolin, David, Ryan, Sarah, Mejia, Amanda F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9006342/ https://www.ncbi.nlm.nih.gov/pubmed/35032660 http://dx.doi.org/10.1016/j.neuroimage.2022.118908 |
Ejemplares similares
-
Longitudinal surface-based spatial Bayesian GLM reveals complex trajectories of motor neurodegeneration in ALS
por: Mejia, Amanda F., et al.
Publicado: (2022) -
Laminar signal extraction over extended cortical areas by means of a spatial GLM
por: van Mourik, Tim, et al.
Publicado: (2019) -
Requirement of upstream Hfq-binding (ARN)(x) elements in glmS and the Hfq C-terminal region for GlmS upregulation by sRNAs GlmZ and GlmY(†)
por: Salim, Nilshad N., et al.
Publicado: (2012) -
The small RNA GlmY acts upstream of the sRNA GlmZ in the activation of glmS expression and is subject to regulation by polyadenylation in Escherichia coli
por: Reichenbach, Birte, et al.
Publicado: (2008) -
Common and divergent features in transcriptional control of the homologous small RNAs GlmY and GlmZ in Enterobacteriaceae
por: Göpel, Yvonne, et al.
Publicado: (2011)