Cargando…
Identification of multimodal brain imaging association via a parameter decomposition based sparse multi-view canonical correlation analysis method
BACKGROUND: With the development of noninvasive imaging technology, collecting different imaging measurements of the same brain has become more and more easy. These multimodal imaging data carry complementary information of the same brain, with both specific and shared information being intertwined....
Autores principales: | Zhang, Jin, Wang, Huiai, Zhao, Ying, Guo, Lei, Du, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9006414/ https://www.ncbi.nlm.nih.gov/pubmed/35413798 http://dx.doi.org/10.1186/s12859-022-04669-z |
Ejemplares similares
-
Robust sparse canonical correlation analysis
por: Wilms, Ines, et al.
Publicado: (2016) -
Group sparse canonical correlation analysis for genomic data integration
por: Lin, Dongdong, et al.
Publicado: (2013) -
inMTSCCA: An Integrated Multi-task Sparse Canonical Correlation Analysis for Multi-omic Brain Imaging Genetics
por: Du, Lei, et al.
Publicado: (2023) -
Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks
por: Waaijenborg, Sandra, et al.
Publicado: (2009) -
Motif-guided sparse decomposition of gene expression data for regulatory module identification
por: Gong, Ting, et al.
Publicado: (2011)