Cargando…
Non-invasively predicting response to neoadjuvant chemotherapy in gastric cancer via deep learning radiomics
Autores principales: | Fang, Mengjie, Tian, Jie, Dong, Di |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9006631/ https://www.ncbi.nlm.nih.gov/pubmed/35434584 http://dx.doi.org/10.1016/j.eclinm.2022.101380 |
Ejemplares similares
-
Predicting origin for bone metastatic cancer using deep learning-based pathology
por: Fang, Mengjie, et al.
Publicado: (2023) -
Enhancing radiomics and Deep Learning systems through the standardization of medical imaging workflows
por: Cobo, Miriam, et al.
Publicado: (2023) -
Advanced gastric cancer: CT radiomics prediction and early detection of downstaging with neoadjuvant chemotherapy
por: Xu, Qinmei, et al.
Publicado: (2021) -
CT-based radiomics scores predict response to neoadjuvant chemotherapy and survival in patients with gastric cancer
por: Sun, Kai-Yu, et al.
Publicado: (2020) -
A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study
por: Cui, Yanfen, et al.
Publicado: (2022)