Cargando…
Exploring Histological Similarities Across Cancers From a Deep Learning Perspective
Histopathology image analysis is widely accepted as a gold standard for cancer diagnosis. The Cancer Genome Atlas (TCGA) contains large repositories of histopathology whole slide images spanning several organs and subtypes. However, not much work has gone into analyzing all the organs and subtypes a...
Autores principales: | Menon, Ashish, Singh, Piyush, Vinod, P. K., Jawahar, C. V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9006948/ https://www.ncbi.nlm.nih.gov/pubmed/35433493 http://dx.doi.org/10.3389/fonc.2022.842759 |
Ejemplares similares
-
Deep learning-enhanced radiomics for histologic classification and grade stratification of stage IA lung adenocarcinoma: a multicenter study
por: Pei, Guotian, et al.
Publicado: (2023) -
Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning
por: Tabibu, Sairam, et al.
Publicado: (2019) -
Evaluation Exploration of Atlas-Based and Deep Learning-Based Automatic Contouring for Nasopharyngeal Carcinoma
por: Wang, Jinyuan, et al.
Publicado: (2022) -
Exploring pathological signatures for predicting the recurrence of early-stage hepatocellular carcinoma based on deep learning
por: Qu, Wei-Feng, et al.
Publicado: (2022) -
Deep6mA: A deep learning framework for exploring similar patterns in DNA N6-methyladenine sites across different species
por: Li, Zutan, et al.
Publicado: (2021)