Cargando…

Plus and minus ends of microtubules respond asymmetrically to kinesin binding by a long-range directionally driven allosteric mechanism

Although it is known that majority of kinesin motors walk predominantly toward the plus end of microtubules (MTs) in a hand-over-hand manner, the structural origin of the stepping directionality is not understood. To resolve this issue, we modeled the structures of kinesin-1 (Kin1), MT, and the Kin1...

Descripción completa

Detalles Bibliográficos
Autores principales: Vu, Huong T., Zhang, Zhechun, Tehver, Riina, Thirumalai, D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007332/
https://www.ncbi.nlm.nih.gov/pubmed/35417226
http://dx.doi.org/10.1126/sciadv.abn0856
Descripción
Sumario:Although it is known that majority of kinesin motors walk predominantly toward the plus end of microtubules (MTs) in a hand-over-hand manner, the structural origin of the stepping directionality is not understood. To resolve this issue, we modeled the structures of kinesin-1 (Kin1), MT, and the Kin1-MT complex using the elastic network model and calculated the residue-dependent responses to a local perturbation in the constructs. Kin1 binding elicits an asymmetric response that is pronounced in α/β-tubulin dimers in the plus end of the MT. Kin1 opens the clefts of multiple plus end α/β-tubulin dimers, creating binding-competent conformations, which is required for processivity. Reciprocally, MT induces correlations between switches I and II in the motor and enhances fluctuations in adenosine 5′-diphosphate and the residues in the binding pocket. Our findings explain both the directionality of stepping and MT effects on a key step in the catalytic cycle of kinesin.