Cargando…
Deep learning time series prediction models in surveillance data of hepatitis incidence in China
BACKGROUND: Precise incidence prediction of Hepatitis infectious disease is critical for early prevention and better government strategic planning. In this paper, we presented different prediction models using deep learning methods based on the monthly incidence of Hepatitis through a national publi...
Autores principales: | Xia, Zhaohui, Qin, Lei, Ning, Zhen, Zhang, Xingyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007353/ https://www.ncbi.nlm.nih.gov/pubmed/35417459 http://dx.doi.org/10.1371/journal.pone.0265660 |
Ejemplares similares
-
Applications and Comparisons of Four Time Series Models in Epidemiological Surveillance Data
por: Zhang, Xingyu, et al.
Publicado: (2014) -
Time Series Modelling of Syphilis Incidence in China from 2005 to 2012
por: Zhang, Xingyu, et al.
Publicado: (2016) -
Time series analysis and forecasting of chlamydia trachomatis incidence using surveillance data from 2008 to 2019 in Shenzhen, China
por: Weng, R. X., et al.
Publicado: (2020) -
Comparative Study of Four Time Series Methods in Forecasting Typhoid Fever Incidence in China
por: Zhang, Xingyu, et al.
Publicado: (2013) -
Towards the elimination of leprosy in Yunnan, China: A time-series analysis of surveillance data
por: Shui, Tie-Jun, et al.
Publicado: (2021)