Cargando…

Non-linear archetypal analysis of single-cell RNA-seq data by deep autoencoders

Advances in single-cell RNA sequencing (scRNA-seq) have led to successes in discovering novel cell types and understanding cellular heterogeneity among complex cell populations through cluster analysis. However, cluster analysis is not able to reveal continuous spectrum of states and underlying gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yuge, Zhao, Hongyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007392/
https://www.ncbi.nlm.nih.gov/pubmed/35363784
http://dx.doi.org/10.1371/journal.pcbi.1010025
Descripción
Sumario:Advances in single-cell RNA sequencing (scRNA-seq) have led to successes in discovering novel cell types and understanding cellular heterogeneity among complex cell populations through cluster analysis. However, cluster analysis is not able to reveal continuous spectrum of states and underlying gene expression programs (GEPs) shared across cell types. We introduce scAAnet, an autoencoder for single-cell non-linear archetypal analysis, to identify GEPs and infer the relative activity of each GEP across cells. We use a count distribution-based loss term to account for the sparsity and overdispersion of the raw count data and add an archetypal constraint to the loss function of scAAnet. We first show that scAAnet outperforms existing methods for archetypal analysis across different metrics through simulations. We then demonstrate the ability of scAAnet to extract biologically meaningful GEPs using publicly available scRNA-seq datasets including a pancreatic islet dataset, a lung idiopathic pulmonary fibrosis dataset and a prefrontal cortex dataset.