Cargando…
Toward improved urban earthquake monitoring through deep-learning-based noise suppression
Earthquake monitoring in urban settings is essential but challenging, due to the strong anthropogenic noise inherent to urban seismic recordings. Here, we develop a deep-learning-based denoising algorithm, UrbanDenoiser, to filter out urban seismological noise. UrbanDenoiser strongly suppresses nois...
Autores principales: | Yang, Lei, Liu, Xin, Zhu, Weiqiang, Zhao, Liang, Beroza, Gregory C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007499/ https://www.ncbi.nlm.nih.gov/pubmed/35417238 http://dx.doi.org/10.1126/sciadv.abl3564 |
Ejemplares similares
-
What makes low-frequency earthquakes low frequency
por: Wang, Qing-Yu, et al.
Publicado: (2023) -
Bridging earthquakes and mountain building in the Santa Cruz Mountains, CA
por: Baden, Curtis W., et al.
Publicado: (2022) -
Coseismic river avulsion on surface rupturing faults: Assessing earthquake-induced flood hazard
por: McEwan, Erin, et al.
Publicado: (2023) -
A multifault earthquake threat for the Seattle metropolitan region revealed by mass tree mortality
por: Black, Bryan A., et al.
Publicado: (2023) -
Dynamic earthquake triggering response tracks evolving unrest at Sierra Negra volcano, Galápagos Islands
por: Bell, Andrew F., et al.
Publicado: (2021)