Cargando…
Enabling Legal Risk Management Model for International Corporation with Deep Learning and Self Data Mining
In uncertain times, risk management is critical in keeping companies from acting rashly and wrongly, allowing them to become more flexible and resilient. International cooperative production project investment and operational risks are different from domestic projects. It has a larger likelihood of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007679/ https://www.ncbi.nlm.nih.gov/pubmed/35432517 http://dx.doi.org/10.1155/2022/6385404 |
_version_ | 1784686902849306624 |
---|---|
author | Wang, Guiling Chen, Yimin |
author_facet | Wang, Guiling Chen, Yimin |
author_sort | Wang, Guiling |
collection | PubMed |
description | In uncertain times, risk management is critical in keeping companies from acting rashly and wrongly, allowing them to become more flexible and resilient. International cooperative production project investment and operational risks are different from domestic projects. It has a larger likelihood of occurrence, severe damage ramifications, and greater difficulty in prevention and control. As a result, companies must develop a scientific, logical, and comprehensive risk management system and procedure when “reaching out” to perform international joint production projects. We utilize machine learning (ML) to build a legal risk assessment model for international cooperative production projects, evaluate its validity, divide it into five risk categories, and suggest countermeasures for the risk variables discovered at each risk level in this work. The output of a single classifier is then fused using an SDM (self-organizing data mining) approach at the decision level, resulting in a multiclassifier early-warning model. In the context of the sustainable development goals, this methodology also allows for a sustainability assessment through risk evaluation. The experimental results show that the MCFM-SDM model outperforms a single classifier and other MCFMs in terms of early warning accuracy and stability, confirming the model's use and superiority. |
format | Online Article Text |
id | pubmed-9007679 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-90076792022-04-14 Enabling Legal Risk Management Model for International Corporation with Deep Learning and Self Data Mining Wang, Guiling Chen, Yimin Comput Intell Neurosci Research Article In uncertain times, risk management is critical in keeping companies from acting rashly and wrongly, allowing them to become more flexible and resilient. International cooperative production project investment and operational risks are different from domestic projects. It has a larger likelihood of occurrence, severe damage ramifications, and greater difficulty in prevention and control. As a result, companies must develop a scientific, logical, and comprehensive risk management system and procedure when “reaching out” to perform international joint production projects. We utilize machine learning (ML) to build a legal risk assessment model for international cooperative production projects, evaluate its validity, divide it into five risk categories, and suggest countermeasures for the risk variables discovered at each risk level in this work. The output of a single classifier is then fused using an SDM (self-organizing data mining) approach at the decision level, resulting in a multiclassifier early-warning model. In the context of the sustainable development goals, this methodology also allows for a sustainability assessment through risk evaluation. The experimental results show that the MCFM-SDM model outperforms a single classifier and other MCFMs in terms of early warning accuracy and stability, confirming the model's use and superiority. Hindawi 2022-04-06 /pmc/articles/PMC9007679/ /pubmed/35432517 http://dx.doi.org/10.1155/2022/6385404 Text en Copyright © 2022 Guiling Wang and Yimin Chen. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Wang, Guiling Chen, Yimin Enabling Legal Risk Management Model for International Corporation with Deep Learning and Self Data Mining |
title | Enabling Legal Risk Management Model for International Corporation with Deep Learning and Self Data Mining |
title_full | Enabling Legal Risk Management Model for International Corporation with Deep Learning and Self Data Mining |
title_fullStr | Enabling Legal Risk Management Model for International Corporation with Deep Learning and Self Data Mining |
title_full_unstemmed | Enabling Legal Risk Management Model for International Corporation with Deep Learning and Self Data Mining |
title_short | Enabling Legal Risk Management Model for International Corporation with Deep Learning and Self Data Mining |
title_sort | enabling legal risk management model for international corporation with deep learning and self data mining |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007679/ https://www.ncbi.nlm.nih.gov/pubmed/35432517 http://dx.doi.org/10.1155/2022/6385404 |
work_keys_str_mv | AT wangguiling enablinglegalriskmanagementmodelforinternationalcorporationwithdeeplearningandselfdatamining AT chenyimin enablinglegalriskmanagementmodelforinternationalcorporationwithdeeplearningandselfdatamining |