Cargando…

Dose-Dependent Efficacy of Umbelliferone and Gelatin-Coated ZnO/ZnS Core-Shell Nanoparticles: A Novel Arthritis Agent for Severe Knee Arthritis

Rheumatoid arthritis (RA) is a well-known autoimmune disorder that affects 1% of the global population. Zinc (Zn) is crucial for bone homeostasis, when compared with normal human bone, Zn level found to be decreased in RA patients and collagen-induced arthritis (CIA) rats. Notably, Zn-based medicina...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Yongzhi, Lakshmanan, Sivalingam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007693/
https://www.ncbi.nlm.nih.gov/pubmed/35432722
http://dx.doi.org/10.1155/2022/7795602
_version_ 1784686906230964224
author Zheng, Yongzhi
Lakshmanan, Sivalingam
author_facet Zheng, Yongzhi
Lakshmanan, Sivalingam
author_sort Zheng, Yongzhi
collection PubMed
description Rheumatoid arthritis (RA) is a well-known autoimmune disorder that affects 1% of the global population. Zinc (Zn) is crucial for bone homeostasis, when compared with normal human bone, Zn level found to be decreased in RA patients and collagen-induced arthritis (CIA) rats. Notably, Zn-based medicinal products play a prominent role in reducing disease symptoms and acute side effects of patients with bone-related diseases. In this study, we report the clinical efficiency of gelatin- (Gel-) coated ZnO-ZnS core-shell nanoparticles (CSNPs) with umbelliferon (Uf) drug (Uf-Gel-ZnO-ZnS CSNPs) on the normal and CIA-induced Wistar rats. The formed ZnO-ZnS CSNPs are spherical in shape, with an average particle diameter of 150 ± 7 nm. It showed strong cytocompatibility when tested on L929 and foreskin fibroblasts (BJ) cells by MTT assay. While comparing with free Uf, various doses (2.5 and 5 mg) of Uf-Gel-ZnO-ZnS CSNPs showed strong inhibition of CIA by attenuated proinflammatory cytokines such as interleukin-1β, IL-6, PEG2, and IL-17. The Uf-Gel-ZnO-ZnS CSNPs show more effectiveness in reducing joint swelling and also increase the level of antioxidant enzymes. In addition, CSNPs significantly reduced the infiltration of inflammatory cells in the knee joint. Thus, the current study concludes that Uf-Gel-ZnO-ZnS CSNPs feasibly reduce the incidence of arthritis in a dose-dependent manner by attenuation of inflammation.
format Online
Article
Text
id pubmed-9007693
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-90076932022-04-14 Dose-Dependent Efficacy of Umbelliferone and Gelatin-Coated ZnO/ZnS Core-Shell Nanoparticles: A Novel Arthritis Agent for Severe Knee Arthritis Zheng, Yongzhi Lakshmanan, Sivalingam Oxid Med Cell Longev Research Article Rheumatoid arthritis (RA) is a well-known autoimmune disorder that affects 1% of the global population. Zinc (Zn) is crucial for bone homeostasis, when compared with normal human bone, Zn level found to be decreased in RA patients and collagen-induced arthritis (CIA) rats. Notably, Zn-based medicinal products play a prominent role in reducing disease symptoms and acute side effects of patients with bone-related diseases. In this study, we report the clinical efficiency of gelatin- (Gel-) coated ZnO-ZnS core-shell nanoparticles (CSNPs) with umbelliferon (Uf) drug (Uf-Gel-ZnO-ZnS CSNPs) on the normal and CIA-induced Wistar rats. The formed ZnO-ZnS CSNPs are spherical in shape, with an average particle diameter of 150 ± 7 nm. It showed strong cytocompatibility when tested on L929 and foreskin fibroblasts (BJ) cells by MTT assay. While comparing with free Uf, various doses (2.5 and 5 mg) of Uf-Gel-ZnO-ZnS CSNPs showed strong inhibition of CIA by attenuated proinflammatory cytokines such as interleukin-1β, IL-6, PEG2, and IL-17. The Uf-Gel-ZnO-ZnS CSNPs show more effectiveness in reducing joint swelling and also increase the level of antioxidant enzymes. In addition, CSNPs significantly reduced the infiltration of inflammatory cells in the knee joint. Thus, the current study concludes that Uf-Gel-ZnO-ZnS CSNPs feasibly reduce the incidence of arthritis in a dose-dependent manner by attenuation of inflammation. Hindawi 2022-04-06 /pmc/articles/PMC9007693/ /pubmed/35432722 http://dx.doi.org/10.1155/2022/7795602 Text en Copyright © 2022 Yongzhi Zheng and Sivalingam Lakshmanan. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Zheng, Yongzhi
Lakshmanan, Sivalingam
Dose-Dependent Efficacy of Umbelliferone and Gelatin-Coated ZnO/ZnS Core-Shell Nanoparticles: A Novel Arthritis Agent for Severe Knee Arthritis
title Dose-Dependent Efficacy of Umbelliferone and Gelatin-Coated ZnO/ZnS Core-Shell Nanoparticles: A Novel Arthritis Agent for Severe Knee Arthritis
title_full Dose-Dependent Efficacy of Umbelliferone and Gelatin-Coated ZnO/ZnS Core-Shell Nanoparticles: A Novel Arthritis Agent for Severe Knee Arthritis
title_fullStr Dose-Dependent Efficacy of Umbelliferone and Gelatin-Coated ZnO/ZnS Core-Shell Nanoparticles: A Novel Arthritis Agent for Severe Knee Arthritis
title_full_unstemmed Dose-Dependent Efficacy of Umbelliferone and Gelatin-Coated ZnO/ZnS Core-Shell Nanoparticles: A Novel Arthritis Agent for Severe Knee Arthritis
title_short Dose-Dependent Efficacy of Umbelliferone and Gelatin-Coated ZnO/ZnS Core-Shell Nanoparticles: A Novel Arthritis Agent for Severe Knee Arthritis
title_sort dose-dependent efficacy of umbelliferone and gelatin-coated zno/zns core-shell nanoparticles: a novel arthritis agent for severe knee arthritis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007693/
https://www.ncbi.nlm.nih.gov/pubmed/35432722
http://dx.doi.org/10.1155/2022/7795602
work_keys_str_mv AT zhengyongzhi dosedependentefficacyofumbelliferoneandgelatincoatedznoznscoreshellnanoparticlesanovelarthritisagentforseverekneearthritis
AT lakshmanansivalingam dosedependentefficacyofumbelliferoneandgelatincoatedznoznscoreshellnanoparticlesanovelarthritisagentforseverekneearthritis