Cargando…
State-of-the-art retinal vessel segmentation with minimalistic models
The segmentation of retinal vasculature from eye fundus images is a fundamental task in retinal image analysis. Over recent years, increasingly complex approaches based on sophisticated Convolutional Neural Network architectures have been pushing performance on well-established benchmark datasets. I...
Autores principales: | Galdran, Adrian, Anjos, André, Dolz, José, Chakor, Hadi, Lombaert, Hervé, Ayed, Ismail Ben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007957/ https://www.ncbi.nlm.nih.gov/pubmed/35418576 http://dx.doi.org/10.1038/s41598-022-09675-y |
Ejemplares similares
-
Author Correction: State-of-the-art retinal vessel segmentation with minimalistic models
por: Galdran, Adrian, et al.
Publicado: (2023) -
Non-uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus Images with Deep Neural Networks
por: Galdran, Adrian, et al.
Publicado: (2020) -
Minimalistic Neutrino Mass Model
por: de Gouvea, Andre, et al.
Publicado: (2000) -
Minimalist spaces = Espacios minimalistas /
por: Mostaedi, Arian
Publicado: (2003) -
Segmentation of retinal vessels based on MRANet
por: Yi, Sanli, et al.
Publicado: (2022)