Cargando…
Using deep learning to predict abdominal age from liver and pancreas magnetic resonance images
With age, the prevalence of diseases such as fatty liver disease, cirrhosis, and type two diabetes increases. Approaches to both predict abdominal age and identify risk factors for accelerated abdominal age may ultimately lead to advances that will delay the onset of these diseases. We build an abdo...
Autores principales: | Le Goallec, Alan, Diai, Samuel, Collin, Sasha, Prost, Jean-Baptiste, Vincent, Théo, Patel, Chirag J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007982/ https://www.ncbi.nlm.nih.gov/pubmed/35418184 http://dx.doi.org/10.1038/s41467-022-29525-9 |
Ejemplares similares
-
Machine learning approaches to predict age from accelerometer records of physical activity at biobank scale
por: Le Goallec, Alan, et al.
Publicado: (2023) -
Age-dependent co-dependency structure of biomarkers in the general population of the United States
por: Le Goallec, Alan, et al.
Publicado: (2019) -
Magnetic Resonance Imaging of the Pancreas
por: Kabala, J., et al.
Publicado: (1988) -
Characterising the relationships between physiological indicators and all-cause mortality (NHANES): a population-based cohort study
por: Nguyen, Vy Kim, et al.
Publicado: (2021) -
A systematic machine learning and data type comparison yields metagenomic predictors of infant age, sex, breastfeeding, antibiotic usage, country of origin, and delivery type
por: Le Goallec, Alan, et al.
Publicado: (2020)