Cargando…
Weighted p-norm distance t kernel SVM classification algorithm based on improved polarization
The kernel function in SVM enables linear segmentation in a feature space for a large number of linear inseparable data. The kernel function that is selected directly affects the classification performance of SVM. To improve the applicability and classification prediction effect of SVM in different...
Autores principales: | Liu, Wenbo, Liang, Shengnan, Qin, Xiwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9008017/ https://www.ncbi.nlm.nih.gov/pubmed/35418133 http://dx.doi.org/10.1038/s41598-022-09766-w |
Ejemplares similares
-
Weighted Feature Gaussian Kernel SVM for Emotion Recognition
por: Wei, Wei, et al.
Publicado: (2016) -
Iterative Reweighted Noninteger Norm Regularizing SVM for Gene Expression Data Classification
por: Liu, Jianwei, et al.
Publicado: (2013) -
An Improved Kernel Credal Classification Algorithm Based on Regularized Mahalanobis Distance: Application to Microarray Data Analysis
por: EL bendadi, Khawla, et al.
Publicado: (2018) -
A Multiple Kernel Learning Model Based on p-Norm
por: Qi, Jinshan, et al.
Publicado: (2018) -
Hadamard Kernel SVM with applications for breast cancer outcome predictions
por: Jiang, Hao, et al.
Publicado: (2017)