Cargando…
A generative adversarial network for synthetization of regions of interest based on digital mammograms
Deep learning (DL) models are becoming pervasive and applicable to computer vision, image processing, and synthesis problems. The performance of these models is often improved through architectural configuration, tweaks, the use of enormous training data, and skillful selection of hyperparameters. T...
Autores principales: | Oyelade, Olaide N., Ezugwu, Absalom E., Almutairi, Mubarak S., Saha, Apu Kumar, Abualigah, Laith, Chiroma, Haruna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9008034/ https://www.ncbi.nlm.nih.gov/pubmed/35418566 http://dx.doi.org/10.1038/s41598-022-09929-9 |
Ejemplares similares
-
A novel wavelet decomposition and transformation convolutional neural network with data augmentation for breast cancer detection using digital mammogram
por: Oyelade, Olaide N., et al.
Publicado: (2022) -
Immunity-based Ebola optimization search algorithm for minimization of feature extraction with reduction in digital mammography using CNN models
por: Oyelade, Olaide N., et al.
Publicado: (2022) -
Improved Dwarf Mongoose Optimization for Constrained Engineering Design Problems
por: Agushaka, Jeffrey O., et al.
Publicado: (2022) -
Advanced dwarf mongoose optimization for solving CEC 2011 and CEC 2017 benchmark problems
por: Agushaka, Jeffrey O., et al.
Publicado: (2022) -
A case-based reasoning framework for early detection and diagnosis of novel coronavirus
por: Oyelade, Olaide N., et al.
Publicado: (2020)