Cargando…

Vero cells gain renal tubule markers in low-calcium and magnesium chemically defined media

In this study, a chemically defined, animal component-free media was developed to promote Vero growth in suspension. Key media compounds were screened using Plackett–Burman styled experiments to create a media formulation to support suspension growth. Vero cells remained viable in suspension, but th...

Descripción completa

Detalles Bibliográficos
Autores principales: Logan, Megan, Rinas, Karsten, McConkey, Brendan, Aucoin, Marc G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9008052/
https://www.ncbi.nlm.nih.gov/pubmed/35418617
http://dx.doi.org/10.1038/s41598-022-10221-z
Descripción
Sumario:In this study, a chemically defined, animal component-free media was developed to promote Vero growth in suspension. Key media compounds were screened using Plackett–Burman styled experiments to create a media formulation to support suspension growth. Vero cells remained viable in suspension, but their growth rate was extremely low, conversely, other cell types such as CHO-K1, MDCK and HEK293T were able to grow in single cell suspension in the same media. To investigate the slow growth of Vero cells, RNA-seq analysis was conducted. Vero cells were cultured in three different conditions: adherently in serum-containing medium, adherently in in-house medium, and in suspension in low calcium and magnesium in-house medium. This study illustrates that adherent cells maintain similar gene expression, while the suspension phenotype tends to overexpress genes related to renal tubules.