Cargando…
The hexosamine pathway and coat complex II promote malignant adaptation to nutrient scarcity
The glucose-requiring hexosamine biosynthetic pathway (HBP), which produces UDP-N-acetylglucosamine for glycosylation reactions, promotes lung adenocarcinoma (LUAD) progression. However, lung tumor cells often reside in low-nutrient microenvironments, and whether the HBP is involved in the adaptatio...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9008580/ https://www.ncbi.nlm.nih.gov/pubmed/35396334 http://dx.doi.org/10.26508/lsa.202101334 |
_version_ | 1784687084885245952 |
---|---|
author | Dragic, Helena Barthelaix, Audrey Duret, Cédric Le Goupil, Simon Laprade, Hadrien Martin, Sophie Brugière, Sabine Couté, Yohann Machon, Christelle Guitton, Jerome Rudewicz, Justine Hofman, Paul Lebecque, Serge Chaveroux, Cedric Ferraro-Peyret, Carole Renno, Toufic Manié, Serge N |
author_facet | Dragic, Helena Barthelaix, Audrey Duret, Cédric Le Goupil, Simon Laprade, Hadrien Martin, Sophie Brugière, Sabine Couté, Yohann Machon, Christelle Guitton, Jerome Rudewicz, Justine Hofman, Paul Lebecque, Serge Chaveroux, Cedric Ferraro-Peyret, Carole Renno, Toufic Manié, Serge N |
author_sort | Dragic, Helena |
collection | PubMed |
description | The glucose-requiring hexosamine biosynthetic pathway (HBP), which produces UDP-N-acetylglucosamine for glycosylation reactions, promotes lung adenocarcinoma (LUAD) progression. However, lung tumor cells often reside in low-nutrient microenvironments, and whether the HBP is involved in the adaptation of LUAD to nutrient stress is unknown. Here, we show that the HBP and the coat complex II (COPII) play a key role in cell survival during glucose shortage. HBP up-regulation withstood low glucose-induced production of proteins bearing truncated N-glycans, in the endoplasmic reticulum. This function for the HBP, alongside COPII up-regulation, rescued cell surface expression of a subset of glycoproteins. Those included the epidermal growth factor receptor (EGFR), allowing an EGFR-dependent cell survival under low glucose in anchorage-independent growth. Accordingly, high expression of the HBP rate-limiting enzyme GFAT1 was associated with wild-type EGFR activation in LUAD patient samples. Notably, HBP and COPII up-regulation distinguished LUAD from the lung squamous-cell carcinoma subtype, thus uncovering adaptive mechanisms of LUAD to their harsh microenvironment. |
format | Online Article Text |
id | pubmed-9008580 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Life Science Alliance LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-90085802022-05-03 The hexosamine pathway and coat complex II promote malignant adaptation to nutrient scarcity Dragic, Helena Barthelaix, Audrey Duret, Cédric Le Goupil, Simon Laprade, Hadrien Martin, Sophie Brugière, Sabine Couté, Yohann Machon, Christelle Guitton, Jerome Rudewicz, Justine Hofman, Paul Lebecque, Serge Chaveroux, Cedric Ferraro-Peyret, Carole Renno, Toufic Manié, Serge N Life Sci Alliance Research Articles The glucose-requiring hexosamine biosynthetic pathway (HBP), which produces UDP-N-acetylglucosamine for glycosylation reactions, promotes lung adenocarcinoma (LUAD) progression. However, lung tumor cells often reside in low-nutrient microenvironments, and whether the HBP is involved in the adaptation of LUAD to nutrient stress is unknown. Here, we show that the HBP and the coat complex II (COPII) play a key role in cell survival during glucose shortage. HBP up-regulation withstood low glucose-induced production of proteins bearing truncated N-glycans, in the endoplasmic reticulum. This function for the HBP, alongside COPII up-regulation, rescued cell surface expression of a subset of glycoproteins. Those included the epidermal growth factor receptor (EGFR), allowing an EGFR-dependent cell survival under low glucose in anchorage-independent growth. Accordingly, high expression of the HBP rate-limiting enzyme GFAT1 was associated with wild-type EGFR activation in LUAD patient samples. Notably, HBP and COPII up-regulation distinguished LUAD from the lung squamous-cell carcinoma subtype, thus uncovering adaptive mechanisms of LUAD to their harsh microenvironment. Life Science Alliance LLC 2022-04-08 /pmc/articles/PMC9008580/ /pubmed/35396334 http://dx.doi.org/10.26508/lsa.202101334 Text en © 2022 Dragic et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Articles Dragic, Helena Barthelaix, Audrey Duret, Cédric Le Goupil, Simon Laprade, Hadrien Martin, Sophie Brugière, Sabine Couté, Yohann Machon, Christelle Guitton, Jerome Rudewicz, Justine Hofman, Paul Lebecque, Serge Chaveroux, Cedric Ferraro-Peyret, Carole Renno, Toufic Manié, Serge N The hexosamine pathway and coat complex II promote malignant adaptation to nutrient scarcity |
title | The hexosamine pathway and coat complex II promote malignant adaptation to nutrient scarcity |
title_full | The hexosamine pathway and coat complex II promote malignant adaptation to nutrient scarcity |
title_fullStr | The hexosamine pathway and coat complex II promote malignant adaptation to nutrient scarcity |
title_full_unstemmed | The hexosamine pathway and coat complex II promote malignant adaptation to nutrient scarcity |
title_short | The hexosamine pathway and coat complex II promote malignant adaptation to nutrient scarcity |
title_sort | hexosamine pathway and coat complex ii promote malignant adaptation to nutrient scarcity |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9008580/ https://www.ncbi.nlm.nih.gov/pubmed/35396334 http://dx.doi.org/10.26508/lsa.202101334 |
work_keys_str_mv | AT dragichelena thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT barthelaixaudrey thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT duretcedric thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT legoupilsimon thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT lapradehadrien thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT martinsophie thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT brugieresabine thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT couteyohann thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT machonchristelle thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT guittonjerome thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT rudewiczjustine thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT hofmanpaul thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT lebecqueserge thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT chaverouxcedric thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT ferraropeyretcarole thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT rennotoufic thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT maniesergen thehexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT dragichelena hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT barthelaixaudrey hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT duretcedric hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT legoupilsimon hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT lapradehadrien hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT martinsophie hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT brugieresabine hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT couteyohann hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT machonchristelle hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT guittonjerome hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT rudewiczjustine hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT hofmanpaul hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT lebecqueserge hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT chaverouxcedric hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT ferraropeyretcarole hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT rennotoufic hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity AT maniesergen hexosaminepathwayandcoatcomplexiipromotemalignantadaptationtonutrientscarcity |