Cargando…

Biological mechanisms of aging predict age‐related disease co‐occurrence in patients

Genetic, environmental, and pharmacological interventions into the aging process can confer resistance to multiple age‐related diseases in laboratory animals, including rhesus monkeys. These findings imply that individual mechanisms of aging might contribute to the co‐occurrence of age‐related disea...

Descripción completa

Detalles Bibliográficos
Autores principales: Fraser, Helen C., Kuan, Valerie, Johnen, Ronja, Zwierzyna, Magdalena, Hingorani, Aroon D., Beyer, Andreas, Partridge, Linda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009120/
https://www.ncbi.nlm.nih.gov/pubmed/35259281
http://dx.doi.org/10.1111/acel.13524
Descripción
Sumario:Genetic, environmental, and pharmacological interventions into the aging process can confer resistance to multiple age‐related diseases in laboratory animals, including rhesus monkeys. These findings imply that individual mechanisms of aging might contribute to the co‐occurrence of age‐related diseases in humans and could be targeted to prevent these conditions simultaneously. To address this question, we text mined 917,645 literature abstracts followed by manual curation and found strong, non‐random associations between age‐related diseases and aging mechanisms in humans, confirmed by gene set enrichment analysis of GWAS data. Integration of these associations with clinical data from 3.01 million patients showed that age‐related diseases associated with each of five aging mechanisms were more likely than chance to be present together in patients. Genetic evidence revealed that innate and adaptive immunity, the intrinsic apoptotic signaling pathway and activity of the ERK1/2 pathway were associated with multiple aging mechanisms and diverse age‐related diseases. Mechanisms of aging hence contribute both together and individually to age‐related disease co‐occurrence in humans and could potentially be targeted accordingly to prevent multimorbidity.